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Abstract The problem of analyzing georeferenced cotton pest insect samples when a

large percentage of the counts are zero is examined. The use of appropriate statistical

methods for their analysis is required. To demonstrate this, georeferenced samples

(n = 63) of tarnished plant bugs (TPBs; Lygus lineolaris [Palisot de Beauvois] (Het-

eroptera: Miridae)) were analyzed by three statistical methods and the results were

compared. Correlation analysis of the sample counts with 25 classes of cotton growth

derived from an unsupervized classification of multispectral imagery was followed by a

complete enumeration analysis comprising three scenarios. The first scenario assumed the

insect samples were unstratified. A distribution of sample averages was created by

complete enumeration of all combinations of samples taken four at a time. The second

scenario used imagery of the cotton fields to allocate the samples among three cotton

growth categories (marginal, good or best) derived by a supervized classification of the 25

unsupervized classes. The insect samples associated with these categorical habitats were

completely enumerated using allocations of 4, 6, 8 or 10 samples at a time from various

sample sizes to determine how different allocations affected the results. The mean was not

affected, but the standard deviation decreased with increased allocation sizes in all habitats.

The third scenario used the two observers and three habitat categories to create six
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additional complete enumeration distributions by allocating four samples at a time from

groups of varying sample sizes. These enumeration distributions are non-parametric esti-

mators of the sampling distribution of: (1) the sample averages of a given sample size when

samples are taken from the entire field, (2) the sample averages of a given size when

samples are taken from each cotton habitat or (3) the sample averages of a given sample

size from samples taken from each habitat by each observer. To support the enumeration

analyses, these insect samples were analyzed further by Poisson regression models. These

models showed significant differences between TPB counts by the two observers and

among the habitats, whereas the observer by habitat interaction was not significant. For

every combination of observer and cotton growth category, a Poisson regression model

estimated the mean rate of TPB numbers. These means were similar to the corresponding

modes of the complete enumeration distributions. The two non-standard methods showed

that TPB numbers differed by habitat categories even though there were samples with a

zero count, whereas a correlation analysis failed to identify a relationship between TPB

sample counts and unsupervized habitat classes.

Keywords Sampling � Complete enumeration � Poisson regression �
Remote sensing � Cotton insect management � Site-specific agriculture

Introduction

Cotton producers depend upon consultants to make many major production decisions,

including insect control. Consultants traverse fields, examining plants along the way, and

based upon their observations, make recommendations to treat or not to treat the crop, or to

wait and examine the field again before making a decision. These decisions require con-

siderable skill, experience and the use of efficient sampling methods (Nyrop et al. 1986;

Trumble 1985; Willers et al. 2005) to assess the status of pests. Consultants and producers

are highly skilled and experienced. They know what to do when insect or other agronomic

problems arise, but their sampling efficiency is limited by time constraints and many fields

scattered over large areas (Fig. 1). On large farms, consultants cannot spend enough time

sampling any one field to obtain the large sample size required by traditional statistical

theory (Karandinos 1976). As a result, pesticide applications are based on judgments

involving small sample sizes that historically result in blanket applications over large

groups of fields at similar times. This practice contributes to the development of pesticide

resistance and increases in both environmental concerns and costs of production (Stern

et al. 1959; Wilson et al. 1989).

Precision agriculture is based on the ability to measure, record and analyze georefer-

enced information on production activities in fields. Precision agriculture technologies can

help farms to improve decisions on insect control and reduce cotton production costs

(Campenella 2000). The processing of georeferenced information by Geographical

Information Systems (GIS) and the use of variable-rate and yield monitor systems installed

on farm equipment enable analyses of site-specific information (Boydell and McBratney

2002; Willers et al. 2008) and better management decisions (Blom et al. 2002; Midgarden

et al. 1997).

Wilson (1994) reviewed procedures that provide estimates of the abundance and dis-

tribution of arthropods in cotton. Irrespective of the choice of sampling technique (Pedigo

and Buntin 1994; Thompson 1992), it is difficult to describe adequately insect population

sizes and their spatial distribution across a farm landscape. This task is easier if remotely
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sensed information is available to facilitate the selection of sample locations (Shaw and

Willers 2006; Willers et al. 1999, 2005). However, data from georeferenced cotton insect

samples require non-standard methods of analysis because the response variable (i.e. the

number of insects collected in a sample) is a count (Johnston 1993; Long 1997). Methods

similar to ordinary least squares (OLS), the standard regression method, can be prob-

lematic for count data (Myers and Montgomery 1997) because, according to Johnston

(1993), they are not normally distributed and the variances of counts are not constant for all

observations.

Complete enumeration, although not commonly used (Manly 1997), is related to

resampling techniques (Confalonieri et al. 2007; Efron 1981). Some assumptions of

resampling are: (1) each sample is considered an equally likely and valid representation of

those that could occur with an infinitely large sample from the process being studied, (2)

the sample values actually obtained are assumed to be a random sample of the total

Fig. 1 Map showing location of the Fisher Place cotton fields (center) in relationship to other fields on the
farm
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possible and (3) it is permissible to take a random sample from the measured samples if

they are independent and equally probable values through the measurement process (Iwi

et al. 1999). Applications of complete enumeration in entomology are uncommon, but

Willers et al. (2000, 2005) applied it to examine the effects of sample unit size and mixed

population densities on sample averages.

Poisson regression represents an application of generalized linear models (Long 1997;

Piegorsch and Bailer 2005). Such models are a refinement of traditional linear models in

that the mean of a population depends on a linear predictor through a non-linear link

function, and the probability distribution of the response variable is a member of the

exponential family of distributions (Johnston 1993; Nelder and Wedderburn 1972). A few

entomological applications only of count models are currently available in the literature

(e.g. Candy 2000; Desouhant et al. 1998; Hall 2000), but none involves site-specific cotton

pest management.

As data analysis of insect samples by standard statistical methods is problematic, our

objective was to use one standard and two non-standard methods to test the hypothesis:

Tarnished plant bug (TPB; Lygus lineolaris [Palisot de Beauvois]) numbers increase as the

quality of the cotton habitats improves. Using a typical data set from a commercial field,

we used correlation as the standard method and complete enumeration and Poisson

regression as the non-standard methods and compared the results.

Materials and methods

This paper integrates applications and concepts from several scientific disciplines. To assist

the reader, an Appendix is included with a glossary of terms.

Classification of imagery

A group of nine cotton fields, called the Fisher Place (Fig. 1, Center), located on a large

farming operation were selected for this experiment. The multispectral imagery (Jensen

2000) was obtained by InTime, Inc. (Cleveland, MS, http://www.gointime.com) on 10 July

2004. The fields and the 3 band (near-infrared, red and green) imagery were provided by

Perthshire Farms, Gunnison, MS. The spatial resolution of the imagery was a 2 9 2 m

pixel registered to Universal Transverse Mercator (UTM) coordinates for Zone 15N, using

the WGS84 datum (Bugayevskiy and Snyder 1995).

In previous applications of multispectral imagery for developing site-specific recom-

mendations for TPB management (Willers et al. 1999, 2005), the georeferenced insect

samples were collected before or at the start of peak bloom. The scouting map used to

select sample locations in these earlier studies was derived from the normalized difference

vegetation index (NDVI) (Elvidge and Chen 1995; Rouse et al. 1974). However, we have

learned that NDVI is ineffective for cotton insect scouting during and after peak bloom.

This study took place when the best cotton habitat category was near the end of peak

bloom. We overcame the ineffectiveness of NDVI at this stage of growth by using the

unsupervized classifier of ERDAS� Imagine� 8.7 (Norcross, GA) to create the field

scouting map. The unsupervized classifier used all 3 spectral bands of the image to assign

each pixel to one of 26 classes (Pouncey et al. 1999; Richards and Jia 1999). Class 0

represented the landscape outside the field boundaries, whereas a number between 1 and 25

represented the unique unsupervized class value assigned to a pixel within the field

boundaries. With 25 classes, each assigned a colour within five main colors (red, orange,
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yellow, green and blue), a detailed map of the variation in cotton growth was derived. This

level of detail was necessary for the field observers to discern subtle differences in cotton

growth at various geographic locations. The observers used this map to select their sample

locations and to derive the three habitat categories used later for the non-standard statistical

analyses.

Collection of field samples

Detailed descriptions and assumptions of the sampling plan in this study are in Willers

et al. (2005, 2006). An important feature of geographical sampling is that the sample unit

size is considered to be a small area with several adjacent cotton plants on which to count

TPB, rather than the traditional sample unit sizes of single plants, numbers of sweeps, or

drop cloth samples (Musser et al. 2007; Wilson 1994). This emphasis on geographic areas

of fields is in distinct contrast to the traditional focus of insect sampling that compares an

estimate of the field average to a threshold value without considering the location of

samples. A georeferenced sampling scheme to record the number of cotton insects should

be designed to enable the number of insects per unit area to be compared within and among

different regions of the cotton field. Both observers used large sample unit sizes to min-

imize the chance that any given sample would have a zero count; this is likely where a

particular habitat category has a low TPB density (Willers et al. 2005). Otherwise, the TPB

counts obtained for the three methods of analysis are typical of samples obtained by

consultants from commercial cotton fields.

Two observers collected 63 georeferenced samples (50 by sweep-net and 13 by drop

cloth) of TPB counts from the nine commercial cotton fields on the 19th and 22nd of July

2004 (Fig. 2). The farm consultant (Observer 1) sampled the fields on both dates, whereas

the research entomologist (Observer 2) sampled them only on the second date. These

observers comprised the two levels of the explanatory variable named OBSERVER in the

non-standard statistical analyses. Using hand-held GPS receivers, both observers deter-

mined the coordinate locations of their sample sites to a horizontal accuracy of 3–5 m. The

coordinates of the sample locations were not post-processed (Kennedy 1996) to improve

their horizontal accuracies.

GIS processing of samples and imagery

A 10 m buffer was used with the GIS to determine the zonal average and maximum

(Theobald 2003) of the unsupervized class values of the pixels (Pouncey et al. 1999) and

these values were retained as new attributes for each TPB sample location. For each sample,

the final attribute table (Theobald 2003) contained these zonal statistics together with

information such as date and time of sample, sample identifier, its geographic coordinates,

observer and total number of TPB by adding together the numbers of adults and nymphs.

Methods of statistical analysis

An iterative supervized classification procedure (Pouncey et al. 1999; Richards and Jia

1999) re-grouped the 25 unsupervized classes into three ordinal categories for use with the

complete enumeration and Poisson regression analyses. These three categories correspond

to different levels of cotton vigor and plant density and comprised the field habitats for

TPB. Other fields, at other times, may be represented better by different numbers of habitat
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categories (Willers et al. 2005). The unsupervized classification class value limits for the

marginal habitat category were C1 and \9 and C20. Unsupervized classes C20 were

labeled as marginal habitat because they represented cotton plant populations of mixed

low, medium and high vigor, with low density and of varying row lengths where there were

no plants (i.e. skips). The cotton from areas in classes\9 differs from that in classes C20

only insofar as the plants are uniformly of low vigor and are not mixed with medium or

high vigor plants. The unsupervized classification class value limits for the good habitat

were C9 and\17 and for the best habitat they were C17 and\20. The marginal, good and

best categories comprised the three levels of the HABITAT explanatory variable used with

the non-standard analyses.

Three scenarios were established for statistical analysis. The first scenario was without

stratification, the second comprised samples stratified by HABITAT (three levels) and the

third scenario had samples stratified by HABITAT and OBSERVER (six combinations).

Fig. 2 Map showing locations of the sample sites by date for two observers for the Fisher Place cotton
fields
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Normality and correlation analyses

The TPB sample counts for the unstratified and selected stratified scenarios were tested for

normality with the SAS� Univariate procedure (SAS� Institute, Ver. 9.1), with a signifi-

cance level of a=0.05. The Pearson product moment correlation coefficient was determined

between the TPB counts and the zonal average and zonal maximum of the unsupervized

class values of the pixels contained in the buffer of each sample (SAS� Proc Corr; SAS�

Institute, Ver. 9.1). Scatter plots of these results were produced with SAS/Graph� Proc

Gplot.

Complete enumeration analyses

A complete enumeration (Manly 1997, p. 8) procedure was used to analyze the TPB

sample counts for each scenario. Complete enumeration distributions were created using

appropriate selections of the various sampling vectors with the following combinatorial

rule (Beyer 1968):

n
m

� �
¼ Cðn; mÞ ¼ n!

m!ðn� mÞ! : ð1Þ

For a specified sampling vector (Table 1a, b or c), this rule determined the number of

combinations (C) of n samples taken m at a time. Unlike other resampling algorithms

(Efron 1981; Manly 1997) that randomly ‘resample the samples’, this approach obtains the

frequency distribution of the estimated means of all C(n, m) unique combinations without

randomization. The result represents a non-parametric estimate of the simple random

sampling distribution of TPB sample averages of size m for the different scenarios. Using

the programming language C, the C(n, m) combinations were ordered lexicographically

Table 1 The listing of sampling vectors: (a) pooled over observers and arranged into one group assuming
that no ancillary information from imagery is available, (b) stratified into three groups according to cate-
gories of cotton growth established from image information and (c) stratified into six groups by category and
observer, using the geographic coordinates of the samples. The sample size of each vector is provided in the
last column

Label Sampling vector n

(a)

Unstratified 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 2 0 1 2 1 2 1 0 0 2 0 3 0 1 0 1 2 2 0 2 4
5 1 4 0 1 0 1 1 0 0 2 0 1 1 2 0 1 1 0 4 0 0 1 3 2 0 0

63

(b)

Best 0 2 4 5 1 4 0 2 0 1 1 2 0 1 1 0 4 0 0 1 3 2 0 0 24

Good 0 0 2 0 1 2 1 2 1 0 0 2 0 3 0 1 0 1 2 2 0 1 1 0 24

Marginal 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 15

Label Sampling vector

Observer 1 n Observer 2 n

(c)

Best 0 2 0 1 1 2 0 1 1 0 4 0 0 1 3 2 0 0 18 0 2 4 5 1 4 6

Good 0 1 1 0 4 0 0 2 0 1 2 1 2 1 0 0 2 0 3 0 1 0 1 2 2 20

Marginal 0 1 1 3 0 0 1 0 1 0 0 0 1 0 0 1 12
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and the mean TPB count for each combination was determined (Willers et al. 2000). Most

of the source code was obtained from a website maintained by Sloane (2007). Histograms

were created with SAS� Proc Capability to summarize results from the three scenarios.

The first scenario used allocations of size m = 4 where n = 63. When the OBSERVER

and HABITAT explanatory variables (Thompson 1992; Willers et al. 2005) are not taken

into account, the average of each combination represents an estimate of the ‘field average’

of TPB. For the second scenario, several choices for m were selected (4, 6, 8 and 10) for a

sensitivity analysis of m using sampling vectors of various sizes (n) pooled over observers,

but stratified by habitat. The mean, standard deviation, minimum and maximum statistics

were computed for the 13 complete enumeration distributions of the first and second

scenarios. For the 6 complete enumeration distributions of the third scenario, the allocation

size was fixed at m = 4, whereas the values of n (the observed sample sizes) varied with

the different combinations of habitat and observer. Summary statistics for the third sce-

nario were determined by inspecting its histograms.

Poisson regression analyses

Insect samples result in count data. For analyses of counts, Poisson regression approaches

are improvements over OLS methods (Long 1997; Seavy et al. 2005; Slymen et al. 2006).

However, if the counts are over-dispersed (Long 1997), a Poisson regression model

analysis will under-estimate the standard errors and over-estimate the test statistics (Al-

lison 1999; Slymen et al. 2006). Over-dispersion (Agresti 1996) occurs when the observed

variance is larger than the nominal variance for a specified statistical distribution. Over-

dispersion was tested using the full Poisson regression model (Johnston 1993), where all

the levels of OBSERVER, HABITAT and their interactions were specified. If the counts

are over-dispersed, another kind of count model must be used (Long 1997; Myers and

Montgomery 1997; Ridout et al. 1998).

Based on Slymen et al. (2006), the Poisson regression model is described as follows.

Let yi represent the TPB count (yi, i = 0, 1, 2, …) for the ith sample. Let xi represent a

vector of covariates named HABITAT and/or OBSERVER and let b be a vector of

regression coefficients to be estimated. The Poisson model (Allison 1999; Long 1997;

Stokes et al. 2000) is given as:

Prob(yijxiÞ ¼ expð�kiÞkyi

i =yi!; ð2Þ

where

ki ¼ expðx0ibÞ: ð3Þ

The expected value of yi given xi is ki (Slymen et al. 2006) and the variance (var) of the

observations equals the mean (Allison 1999; Johnston 1993; Long 1997) or:

E yð Þ ¼ var kð Þ ¼ k: ð4Þ
The strategy for fitting a Poisson model to these TPB sample counts was similar to the

approach described by Johnston (1993). First, the full model was fitted to the sample

counts as:

kjk ¼ exp b0 þ OBSERVERj þ HABITATk þ OBSERVER � HABITATjk

� �
; ð5Þ

where b0 is the intercept, j = 1, 2 and k = 1, 2, 3. As a first step, the model given by Eq. 5

was used to determine whether the interaction term is significant. For georeferenced TPB
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counts, if this interaction is significant, then one or both effects represent sources of

random sampling error and have no useful interpretation as main effects by this model

(Eq. 5). Reasons for the significant interaction should then be identified and alternative

methods of analysis considered.

On the other hand, if the interaction is non-significant, the next step (Johnston 1993) is

to fit a reduced model without any explanatory variables:

k ¼ exp b0ð Þ; ð6Þ

followed by addition of the explanatory variable OBSERVER:

kj ¼ exp b0 þ OBSERVERj

� �
; ð6aÞ

and then HABITAT to obtain:

kjk ¼ exp b0 þ OBSERVERj þ HABITATk

� �
: ð6bÞ

From this set of candidate models, the last step is to select the model that provides the best

fit with the smallest number of terms and use it for further analyses. The fit of the model at

each step is monitored by comparing changes in deviance (Johnston 1993). The goodness

of fit of the selected model is tested by the likelihood ratio (LR) test (Schabenberger and

Pierce 2002):

LR ¼ 2ðlnLUnrestricted � lnLRestrictedÞ� v2ðJÞ; ð7Þ

where J is the difference in the number of regressors between the unrestricted and

restricted models (Park 2005).

Results

Traditional statistical analyses

Tests of normality

The Shapiro–Wilk statistic, W, was significant (W = 0.782, p \ 0.0001) for the unstrati-

fied TPB samples. Tests for normality of the samples by habitat categories (pooling over

OBSERVER) were significant for the marginal (W = 0.630, p \ 0.0001), good

(W = 0.827, p = 0.0008) and best (W = 0.831, p = 0.0010) cotton growth categories.

Similarly, tests for normality of the sample counts (pooling over HABITAT) were sig-

nificant for both OBSERVER 1 and 2 (W = 0.786, p = 0.0001; W = 0.786, p = 0.0001,

respectively). The strength of significance of these results indicates that these sample

counts are not normally distributed and methods based on assumptions of normality would

be inappropriate (Allison 1999; Long 1997). To emphasize this fact, the correlations

between the sample counts and the zonal average and the zonal maximum of the sample

sites are discussed next.

Correlation of TPB samples with unsupervized habitat classes

Using the unsupervized class values, Fig. 3 shows the scatter plot of total TPB numbers

against the zonal average of the pixels contained within the buffer at the corresponding

sample location. The estimated correlation coefficient (r = 0.21) between these TPB

Precision Agric (2009) 10:189–212 197

123



counts and the zonal average is not significant (p = 0.09). The zonal maximum of the

unsupervized class values of pixels at the sample locations and the TPB counts (Fig. 4)

also shows no linear trend (r = 0.11, p = 0.37). Even if these correlations were significant,

they are so small that few commercial consultants would prepare a site-specific pre-

scription for TPB control with these results.

The lack of a relationship using a standard method of analysis is to be expected because

these TPB counts were not normally distributed. Also, the unsupervized classes do not

represent an ordered list of cotton growth vigor. These results mean that non-standard

methods of analysis are required to obtain evidence for geographical differences in the

abundance of TPBs.

Fig. 3 Scatter plot of tarnished plant bug sample counts versus the zonal average of the habitat classes of
pixels within a 10 m buffer centered on the sample site location

Fig. 4 Scatter plot of tarnished plant bug sample counts versus the zonal maximum of the habitat class
pixels within a 10 m buffer centered on the sample site location
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Complete enumeration

Over a third of the pooled TPB sample counts (Table 1a) are zeros. However, using

complete enumeration to estimate the distribution of sample averages of size m minimizes

the impact of samples whose count was zero. For instance, the complete enumeration

distribution for the unstratified scenario (Fig. 5) represents the sampling distribution of the

field average for sample averages of size four by simple random sampling (Thompson 1992;

Willers et al. 2005). This distribution describes the expected results of sample averages for

the third week of July 2004, as if an observer used a simple random sampling design without

geographic stratification and repeatedly collected only four samples. In the long term, 3% of

the results would average zero TPB, 27% would average 0.5 TPB, 33% would average 1

TPB and so forth. From this distribution, the chance that a large sample average (i.e. C3

TPB) will be observed is small if a habitat map is unavailable to guide the selection of

sample sites. Other summary statistics for this scenario are given in Table 2, row 1.

The allocation of samples (Table 1b) among the three habitat categories (marginal,

good and best) for sample sizes of m = 4, with pooling across observers, results in dif-

ferent complete enumeration distributions (Fig. 6). The histograms show that the averages

tend to increase with improvement in cotton habitat quality. This trend suggests that TPB

numbers are not uniform across these fields and that there is a potential for yield loss in the

best cotton habitat regions of these fields. The result for the unstratified scenario, which

makes no geographical distinction among the samples, shows little evidence of any

potential problem among these fields at this time. The histogram of the unstratified

example is provided for comparison (bottom panel, Fig. 6).

Fig. 5 Complete enumeration distribution of n = 63 unstratified tarnished plant bug sample counts. With
an allocation size of m = 4, the number of sample average combinations (C(63,4)) is indicated along with
the overall mean
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Table 2 Summary statistics from the complete enumeration distributions of means for N combinations of
four groupings of sampling vectors (i.e. unstratified, best, good and marginal) presented in Table 1a and b

Label Na Mean Standard deviation Minimumb Maximumb

Unstratified (m = 4) 595,665 0.98 0.58 0 4.25

Best (m = 4) 10,626 1.42 0.71 0 4.25

Best (m = 6) 134,596 1.42 0.55 0 3.67

Best (m = 8) 735,471 1.42 0.45 0 3.25

Best (m = 10) 1,961,256 1.42 0.38 0.10 2.90

Good (m = 4) 10,626 0.92 0.42 0 2.25

Good (m = 6) 134,596 0.92 0.33 0 2.18

Good (m = 8) 735,471 0.92 0.27 0 2.00

Good (m = 10) 1,961,256 0.92 0.22 0 1.80

Marginal (m = 4) 1,365 0.40 0.22 0 1.00

Marginal (m = 6) 5,005 0.40 0.16 0 1.00

Marginal (m = 8) 6,435 0.40 0.12 0 0.75

Marginal (m = 10) 3,003 0.40 0.09 0.10 0.60

a The value for number of combinations (N) is determined by C(n, m) where n = the number of samples in
the four sampling vectors and m is set to 4, 6, 8 or 10
b These minimum and maximum values are an average according to the argument m in C(n, m)

Fig. 6 Complete enumeration distributions of sample averages for the pooled observers across three habitat
categories in comparison to the unstratified sampling distribution, with an allocation size of m = 4
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A sensitivity analysis examined effects on the sampling distribution of averages among

the habitats pooled over observers for other allocation sizes of m = 6, 8 and 10. Within

habitat categories, this analysis (Table 2, Rows 2–13) shows little difference among these

means compared to allocations of size four, whereas the estimated standard deviations

decrease. Differences in the standard deviation among the habitat groupings for identical

choices of m (Table 2) support Johnston’s (1993) assertion that for counts, the variances

are not constant for all observations.

Based on the sensitivity analysis for different sizes of m (Table 2), we chose allocations

of size four only to compute the enumeration distributions (Figs. 7 and 8) for the sampling

vectors of the third scenario (Table 1c). Both observers’ distributions have identical modes

and maxima for the marginal habitat, but differ for both the good and best habitats. The

greatest difference is for the good cotton habitat category. The unstratified and stratified

distributions of each observer result in different numbers of combinations because of

different sample sizes in the three habitats. For the two better habitats, the distribution of

the averages of sample allocations for Observer 2 tends to have larger ranges and modes

than for Observer 1. Reasons for these differences are discussed further below. Unlike the

unstratified case, comparisons among these stratified distributions indicate that large

sample averages (i.e. C3 TPB) are more prevalent in regions with the best cotton.

Fig. 7 Complete enumeration distributions of sample averages for the farm consultant (OBSERVER 1) for
three habitat categories in comparison to his unstratified sampling distribution, with an allocation size of
m = 4
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Poisson regression analyses

Table 3 gives the type 3 (an option for SAS� Proc Genmod) analysis of variance table for

the full model (Eq. 5) and shows no significant interaction between OBSERVER and

HABITAT. The interpretations of this result for this collection of TPB counts are that there

is no variability due to the individuals collecting the sample (Musser et al. 2007) and that

the habitat categories were specified properly by the supervized classification process.

Fig. 8 Complete enumeration distributions of sample averages for the researcher (OBSERVER 2) for three
habitat categories in comparison to his unstratified sampling distribution, with an allocation size of m = 4

Table 3 Analysis of variance table for the full Poisson regression model

Source Likelihood ratio statistics for type 3 analysisa

Num. dfb Den. dfc F-value Pr [ F v2 Pr [ v2

OBSERVER 1 57 0.68 0.412 0.68 0.408

HABITAT 2 57 5.57 0.006 11.14 0.004

OBSERVER * HABITAT 2 57 1.27 0.289 2.54 0.281

a Refer to the software documentation for Proc Genmod in SAS� for further discussion of a type 3 analysis
b Numerator degrees of freedom
c Denominator degrees of freedom
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With Poisson regression, the test to determine if the data are over-dispersed is accom-

plished by fitting Eq. 5 with the PSCALE option (Piegorsch and Bailer 2005) in SAS�. For

these TPB counts, the estimated scale parameter is 1.03 (Poisson Model, Eq. 1, Table 4).

Table 4 Parameter estimates and assessment criteria for goodness of fit for various Poisson regression
models

Model description Parameter
estimates

Standard
error

p [ v2 Goodness of fit assessment criteria

Log-
likelihood

Deviance Pearson
v2

df

Poisson model Eq. 5 -50.0 72.1 60.2 57

INTERCEPT 0.981 0.257 0.000 1

OBSERVER 1 -0.981 0.353 0.005 1

OBSERVER 2 0.000 0.000 – 0

HABITAT 1 -2.079 0.575 0.000 1

HABITAT 2 -0.981 0.345 0.004 1

HABITAT 3 0 0 – 0

OBSERVER 1 * HABITAT 1 1.674 0.958 0.080 1

OBSERVER 1 * HABITAT 2 0.288 0.840 0.732 1

OBSERVER 1 * HABITAT 3 0 0 – 0

OBSERVER 2 * HABITAT1 0 0 – 0

OBSERVER 2 * HABITAT 2 0 0 – 0

OBSERVER 2 * HABITAT 3 0 0 – 0

SCALE 1.03 0

Poisson model Eq. 6 -63.0 92.3 90.4 62

INTERCEPT -0.016 0.127 0.900 1

SCALE 1.000 0 –

Poisson model Eq. 6a -43.0 91.8 89.1 61

INTERCEPT 0.051 0.191 0.788 1

OBSERVER 1 -0.179 0.321 0.576 1

OBSERVER 2 0 0 – 0

SCALE 1.21 0

Poisson model Eq. 6b -50.6 74.7 63.2 59

INTERCEPT 0.878 0.255 0.001 1

OBSERVER 1 -0.794 0.319 0.013 1

OBSERVER 2 0 0 – 0

HABITAT 1 -1.678 0.483 0.000 1

HABITAT 2 -0.869 0.313 0.005 1

HABITAT 3 0 0 – 0

SCALE 1.03 0

Poisson model Eq. 8 -79.1 – – –

INTERCEPTa -3.248 0.883 0.000 –

OBSERVERa 0.787 0.299 0.008 –

HABITATa 0.848 0.216 0.000 –

a Estimated by Proc Countreg rather than Proc Genmod in SAS� because Poisson Model Eq. 8 required a
different model matrix (the xi in Eq. 3) than Poisson Models (5–6b) to allow for exponentiation of its
parameters (Johnston 1993; Long 1997). See text
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If the TPB samples were from a Poisson process, the scale parameter would be 1.00 (Agresti

1996; Stokes et al. 2000). As the estimated scale parameter is close to unity and Eq. 4 is

satisfied, we conclude that an analysis by Poisson regression is appropriate.

To determine the simplest, best fitting Poisson model (Johnston 1993), the deviance

statistic of the fitted full model (Poisson Model, Eq. 5, Table 4) is compared to the

deviance statistics of several other models. The deviance of the reduced model (Poisson

Model, Eq. 6, Table 4) decreases slightly from 92.3 to 91.8 when the OBSERVER effect is

added (Poisson Model, Eq. 6a, Table 4). It decreases considerably (from 92.3 to 74.8)

when both OBSERVER and HABITAT are included (Poisson Model, Eq. 6b, Table 4).

The greater changes in deviance with the addition of HABITAT indicate that its effect is

more important than OBSERVER in explaining these data. The goodness of fit of Poisson

Model, Eq. 6b, (Table 4) is assessed by Eq. 7 with J = 3 degrees of freedom. Since the

result is strongly significant (p \ 0.0001), we conclude that this model provides an

acceptable fit to these georeferenced TPB counts.

Since Poisson Model Eq. 6b (Table 4) has the smallest deviance without interaction

terms, it is selected to determine the expected probabilities (Long 1997) of observing 0, 1,

2, 3, 4 or 5 TPBs in a sample for the six OBSERVER by HABITAT combinations. These

probabilities (Table 5) indicate that the chance of obtaining a zero count decreases while

larger counts become more probable with increasing quality in cotton habitat. These trends

can be summarized by an alternative formulation of Eq. 6b which is:

k ¼ exp b0 þ OBSERVERþ HABITATð Þ: ð8Þ

With this model (Poisson Model Eq. 8, Table 4), the mean increase in TPB numbers

between OBSERVERs and across the HABITAT categories can be determined (Johnston

1993; Long 1997). For example, with the effects of HABITAT kept constant, OBSERVER

2 generally found 2.2 TPB for every 1 TPB found by OBSERVER 1. This is found by

exponentiation of the parameter estimate for OBSERVER (i.e. exp(0.787)). As for

HABITAT, the TPB counts increase by 2.3 TPB (i.e. exp(0.848)) with each increase in

habitat level from marginal to best, while keeping the effect of OBSERVER constant.

The Poisson regression analyses verify the complete enumeration results because the

estimates of Poisson means (Table 5) for the six observer by habitat combinations are close

to the modal values of the comparable complete enumeration distributions (Figs. 7 and 8).

Table 5 Estimated tarnished plant bug means and probabilities of occurrences for count values in samples
from two observers over three cotton growth categories predicted by Poisson regression Model, Eq. 6b of
Table 4

Effecta Predicted TPB mean (k̂) Tarnished plant bug count per sample (probabilityb)

0 1 2 3 4 5

OBSERVER 1, Marginal 0.203 0.816 0.166 0.017 0.001 0.000 0.000

OBSERVER 1, Good 0.456 0.634 0.289 0.066 0.010 0.001 0.000

OBSERVER 1, Best 1.087 0.337 0.367 0.199 0.072 0.020 0.004

OBSERVER 2, Marginal 0.449 0.638 0.287 0.064 0.010 0.001 0.000

OBSERVER 2, Good 1.009 0.365 0.368 0.185 0.062 0.016 0.003

OBSERVER 2, Best 2.405 0.090 0.217 0.261 0.209 0.126 0.060

a See Johnston 1993; Seavy et al. 2005
b Probabilities may not sum to one due to rounding error or because probabilities estimated for count events
[5 are not presented
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Both methods provide effective ways of analyzing georeferenced samples from commer-

cial cotton fields in spite of the occurrence of zero counts, differences in sample location

and different sample sizes among the habitat categories. Results from the two non-standard

methods provide a way forward to develop better site-specific pesticide prescriptions (e.g.

Dupont et al. 2000) for the management of TPB.

Discussion

If there is no difference in the counts of insects from samples grouped by habitat, the

complete enumeration distributions will have similar centers and shapes. Similarly, the

habitat effect of a Poisson regression model will be non-significant. If the insect counts

from cotton habitats differ, the shape and or location of the centers of complete enumer-

ation distributions will shift and the habitat effect of a Poisson regression model will be

significant. The histograms of enumerated averages and the Poisson regression model

estimates of probabilities of different count values provide the analytical capability to

examine how habitat categories (or other explanatory variables relevant to the study) affect

the shape of the distribution. The importance of considering differences in shapes of

sample counts by habitat categories was first noted when Bayesian methods were used to

analyze insect counts (Willers and Akins 2000). That work and the results of this study

suggest that interpreting the shapes of enumeration distributions (or Poisson probability

distributions) derived from TPB sample counts facilitates geographical or site-specific

decisions for pest management. These results also prepare the way for testing hypotheses

about site-specific action thresholds (Fleischer et al. 1999; Stern et al. 1959) for different

habitat categories and how they should differ over the production season.

The two observers in this study demonstrate differences in approaches to sampling

while determining the insect infestation levels in an area. Although both observers col-

lected their samples by a similar process, their sampling pattern and intensity was different.

Nevertheless, the enumeration distributions for the two observers can be considered as

valid representations of TPB numbers in the habitat categories of these cotton fields during

the study in 2004. In spite of the notable difference in sample size and site selection by the

two observers (Fig. 2), the difference in TPB averages between observers was not a

reflection of their sampling skills (i.e. each has more than 30 years of experience in

sampling cotton). This difference in TPB averages was due to the location of their sample

sites in each habitat category, which reflected the endogenous variation in TPB abundance

within the habitats. The map of habitat categories (Fig. 2) shows that the consultant

(Observer 1) sampled toward the southern area where the percentage of the best cotton

habitat is greater. The map also shows that this observer, unlike Observer 2, generally

selected sample sites in the lower range of the best category (e.g. class 17, Fig. 9).

Neither the consultant nor the researcher spent much time where the TPB population

was expected to be the largest (Willers et al. 1999, 2005), i.e. in the best cotton (deep blue

hues on the map of Fig. 9). Observer 1 was familiar with recent spatio-temporal trends in

TPB numbers over these fields and focused his sampling efforts toward the lower ranges of

the best category in an effort to find the boundary class breakpoint between it and the good

habitat category. His previous sampling experiences indicated that TPB populations were

greater in the upper set of the unsupervized classes representing the best habitat and he

needed no further samples to confirm this. When Observer 2 chose sites within the upper

range of the best cotton (e.g. unsupervized class 20; Fig. 9) and discovered that 3 out of 6

samples had counts C3, he concluded that TPB numbers were already large and it was
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unnecessary to collect more samples (Willers et al. 2005). Observer 2 focused his efforts

across the marginal categories to obtain a large enough sample size to demonstrate that

larger sample sizes in that category were also unnecessary. This result was reflected by

Observer 1, who chose only 3 sample locations in the marginal habitats (Table 1c) and also

found very small numbers of TPBs. The sample size and locations used by Observer 1 in

the marginal habitat category indicates that Observer 2 spent too much time sampling

there.

The sample size and site selection of Observer 2 in the upper unsupervized classes of

the good habitat was similar to the sampling rationale used by the field consultant for his

sample site selection in the lower unsupervized classes of the best habitat. In other words,

Fig. 9 Illustration of the geographical distribution of the 25 unsupervized classes derived from the three
bands of the multispectral image for the Fisher Place cotton fields. This figure illustrates the scouting map
used by the observers to select their sample sites
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based upon the unsupervized classification map, both observers actually spent their sam-

pling time learning where to establish a breakpoint between the good and best habitat

categories. This behavior by both observers suggests that additional research is necessary

to determine time-saving methods that better establish class limits among habitats. Overall,

the selection of 25 sample sites by Observer 1 was as informative in describing the TPB

risk geographically (Willers et al. 2005) in these cotton fields as the combined sample size

of 63.

Some investigators have criticized results of this type of study because the sample sites

were not distributed evenly across the unsupervized habitat classes (or the supervized

habitat categories). Consequently, they maintain that the complete enumeration distribu-

tions for the unstratified and stratified scenarios favor one habitat more than another. In a

commercial field environment, requiring consultants to have equal sample sizes in all

habitat categories is unrealistic because it does not recognize the constraints on their

sampling time and it undervalues their judgment. Our results show that both complete

enumeration and Poisson regression provide excellent summaries of geographical sample

counts in spite of the fact that sample sizes between the observers and among the habitat

categories were not equivalent. This finding indicates that equal allocation of sample sites

among habitat categories is not required for commercial field applications.

The unsupervized classification map described the geographical differences in crop

vigor, which enabled the two observers to select their sample locations independently. The

re-grouping of that map into supervized classification habitat categories facilitated the

analyses of the sample counts by non-standard methods. The analyses of geographical

sample counts are valid for only a short time and need to be done frequently because other

circumstances such as weather and previous pesticide spray patterns influence insect

abundance and dispersion (Fleisher et al. 1999; Stern et al. 1959). The temporal nature of

insect sampling requires producers and consultants to have a quick and accurate sampling

method to make management decisions. It is feasible to meet this requirement if habitat

classification maps derived from remote sensing imagery are available (Willers et al. 1999,

2005), but it is also necessary to analyze sample counts rapidly by geographical regions.

On commercial farms, complete enumeration is a more appropriate approach than the

fitting of a Poisson regression model which requires artistic involvement by an experienced

analyst. Therefore, our next step is to develop farm friendly applications of complete

enumeration methods.

Conclusions

Statistics derived from complete enumeration distributions or Poisson regression models of

georeferenced TPB samples are better for use in TPB pest management than those obtained

by standard methods of analysis (OLS). Results from Poisson regression analyses con-

firmed the validity of complete enumeration analyses. Both methods modelled the sample

counts as functions of categorical explanatory variables. Poisson regression is a more

appropriate tool for the research or industrial investigator who has the time to collect larger

sample sizes, whereas the graphical display of complete enumeration distributions is

preferred for farm applications where time is limited and sample sizes are smaller. The

non-standard methods showed that, although the two observers allocated their sampling

efforts differently among the habitat categories, the analyses of both sets of counts pro-

duced similar results about the geographic abundance of TPB. In summary, the hypothesis

that TPB abundance differs among cotton habitats was substantiated by both the complete
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enumeration and Poisson regression analyses, whereas the correlation analysis failed to

show any relationship. This contrast in results between a standard and two non-standard

analysis methods indicates that for questions involving georeferenced sampling informa-

tion the choice of analysis technique is a major consideration. This finding has important

implications in precision agriculture for the site-specific management of pests on a valu-

able crop such as cotton.
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Appendix

To develop the analysis processes and concepts of this paper, the following definitions are

given:

(1) Buffer: A GIS polygon, typically a circle of a specified radius used to define a region

within which specialized spatial processing operations are restricted.

(2) Complete enumeration: A resampling method where all possible combinations of a

sampling vector are derived by a combinatorial rule expressed as:

Cðn;mÞ ¼ n!=m!ðn� mÞ!

which defines the number of combinations (Beyer 1968) of n distinct items taken m
at a time. The combinatorial rule was applied to enumerate all allocations (m) of a

chosen sample size of (n) tarnished plant bug (TPB) samples without repeating the

selection of sample counts contained in any prior combination.

(3) Complete enumeration distribution: The histogram that describes the frequency of

events (i.e. the mean of samples taken m at a time) that result from the complete

enumeration of the sample vector (a set of n samples).

(4) Count data: Integer value for the number of items of interest counted in a sample of

a specified sample unit size.

(5) Habitat category: A collection of pixels whose attribute values belong to the same

category and represent cotton whose phenology of growth is more similar than other

categories (Willers et al. 2005). In a specialized usage, it can be a synonym for the

GIS concept of a zone in raster processing (Theobald 2003).

(6) Over-dispersion: This occurs when count data show greater variability than is

predicted by the assumed mean-variance relationship (Hinde and Demétrio 1988;
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Long 1997). If ignored, the selected statistical model may underestimate the

standard errors and result in inappropriate inferences on the estimated regression

parameters.

(7) Peak bloom: That period during the production season when the plants produce the

maximum number of open flowers per plant.

(8) Poisson regression: A regression technique based upon the Poisson probability

mass function where the estimates of parameters are derived by maximum

likelihood methods.

(9) Raster format: A GIS file format where the features are represented as a collection

of cells of the same size and shape for a specified number of rows and columns.

Each cell is georeferenced and only one integer valued attribute is assigned to each

cell (Theobald 2003).

(10) Sample: A set of observations obtained with a particular sampling method (Willers

et al. 2005) at a geographic location in a farm field. The response, or dependent

variable, is the number (or count) of insects found in the sample.

(11) Sample size: The number of samples (n) collected by an observer while using a

specified sampling method.

(12) Sample unit size: In this study, the area of ground represented by a single sample

obtained with a specified sampling method (Willers et al. 2000).

(13) Sample vector: The collection of n samples collected by an observer during a

specific period of time. The sampling vector can be unstratified (no ancillary data

associated with the sample) or geographically stratified (ancillary data associated

with the sample). Important ancillary data (Willers et al. 2005) associated with a

sample are the sampler, its geographic coordinate (or label), and the cotton habitat

class from which the sample was obtained. This concept must not be confused with

vector data in GIS processing.

(14) Simple random sample: The simplest sampling design in which a sample site is

chosen by a randomization process from the set, or collection, of all possible sites

and where each site has an equally probable chance of being selected.

(15) Stratified, simple random sample: A sample design derivative where the samples are

stratified according to some type of classification of remote sensing information that

determines the number and geographical extent of the different strata. A simple

random sampling design in each stratum determines the summary statistics of each

stratum (Willers et al. 2005). This differs from a stratified sampling design where

summary statistics for a population of interest are derived using samples from all the

strata.

(16) Supervized classification: A classification of image pixels closely controlled by the

analyst (Pouncey et al. 1999). In this process, the analyst selects pixels that

represent patterns or land cover features that are recognized, or identified, with help

from other sources, such as aerial photos, ground truth data, or maps. Knowledge of

the data, and of the classes desired, is required before classification.

(17) Unsupervized classification: A computer-automated process that depends on the

data itself for the definition of classes (Pouncey et al. 1999). It enables the analyst to

specify some parameters that the computer uses to uncover statistical patterns

inherent in the data.

(18) Vector format: A GIS file format where geographical features are represented as

points and that uses their x–y coordinates to construct points, lines and areas

(Theobald 2003).
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(19) Zonal average of a buffer: The average value of the attribute of interest for all pixels

whose centers lie within the boundary of the buffer polygon (Theobald 2003).

(20) Zonal maximum of a buffer: The maximum value of the attribute of interest from the

set of pixels whose centers lie within the boundary of the buffer polygon (Theobald

2003).
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